翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Phragmén–Lindelöf theorem : ウィキペディア英語版
Phragmén–Lindelöf principle
In mathematics, the Phragmén–Lindelöf principle is a 1908 extension by Lars Edvard Phragmén (1863–1937) and Ernst Leonard Lindelöf of the maximum modulus principle of complex analysis, to unbounded domains.
==Background==

In complex function theory it is known that if a function ''f'' is holomorphic in a bounded domain ''D'', and is continuous on the boundary of ''D'', then the maximum of |''f''| must be attained on the boundary of ''D''. If, however, the region ''D'' is not bounded, then this is no longer true, as may be seen by examining the function g(z) = \exp(\exp(z)) in the strip -\pi/2 < \mbox \ < \pi/2. The difficulty here is that the function ''g'' tends to infinity 'very' rapidly as ''z'' tends to infinity along the positive real axis.
The Phragmén–Lindelöf principle shows that in certain circumstances, and by limiting the rapidity with which ''f'' is allowed to tend to infinity, it is possible to prove that ''f'' is actually bounded in the unbounded domain.
In the literature of complex analysis, there are many examples of the Phragmén–Lindelöf principle applied to unbounded regions of differing types, and also a version of this principle may be applied in a similar fashion to subharmonic and superharmonic functions.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Phragmén–Lindelöf principle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.